Personalized Surgery in Oncology: Integration of Genomic Biomarkers and Vaccinal Therapies as Surgical Adjuvants
DOI:
https://doi.org/10.63969/jatvd658Keywords:
Precision Oncology, Genomic Biomarkers, Neoantigen Vaccine, Cancer Surgery, Recurrence RiskAbstract
Surgical resection remains the main curative option for many solid tumors, but recurrence is still high due to micrometastatic disease that conventional surgery alone cannot fully remove. Precision oncology now makes it possible to integrate genomic biomarkers and personalized immunological strategies to improve surgical results. This study evaluated combining genomic profiling and personalized neoantigen-based vaccines as perioperative adjuvants to lower recurrence and extend disease-free survival. A documentary, statistical, and experimental approach identified frequent mutations and assessed their immunogenic potential. A binding affinity heatmap predicted interactions between neoantigens and MHC alleles, and an in vitro assay confirmed tumor cell lysis after exposure to the prototype vaccine. Statistical projections and a simulated Kaplan–Meier curve showed that adding a personalized vaccine to biomarker-guided surgery could reduce recurrence by up to 50% and increase disease-free survival from 24 to 40 months. These findings align with existing evidence that neoantigen vaccines help boost the immune response against residual tumor cells, complementing precise surgical removal. Although the results are promising, in vivo studies and clinical trials are needed to confirm safety, real effectiveness, and feasibility, especially in settings with limited genomic resources. This work supports that combining molecular profiling, rational vaccine design, and tailored surgical planning can strengthen precision oncology and offer patients a better chance of achieving long-lasting remission.
References
Brahmer, J. R., et al. (2018). Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO clinical practice guideline. Journal of Clinical Oncology, 36(17), 1714–1768. https://doi.org/10.1200/JCO.2017.77.6385
Butterfield, L. H. (2015). Cancer Vaccines. BMJ, 350, h988. https://doi.org/10.1136/bmj.h988
Chen, D. S., & Mellman, I. (2017). Elements of cancer immunity and the cancer–immune set point. Nature, 541(7637), 321–330. https://doi.org/10.1038/nature21349
Curigliano, G., et al. (2017). De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Annals of Oncology, 28(8), 1700–1712. https://doi.org/10.1093/annonc/mdx308
Eggermont, A. M. M., et al. (2018). Adjuvant pembrolizumab versus placebo in resected stage III melanoma. The New England Journal of Medicine, 378(19), 1789–1801. https://doi.org/10.1056/NEJMoa1802357
Farkona, S., et al. (2016). Cancer immunotherapy: the beginning of the end of cancer? BMC Medicine, 14(1), 73. https://doi.org/10.1186/s12916-016-0623-5
Finn, O. J. (2008). Cancer Immunology. The New England Journal of Medicine, 358(25), 2704–2715. https://doi.org/10.1056/NEJMra072739
Hodi, F. S., et al. (2017). Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. The New England Journal of Medicine, 377(19), 1824–1835. https://doi.org/10.1056/NEJMoa1709030
Hu, Z., Ott, P. A., & Wu, C. J. (2018). Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nature Reviews Immunology, 18(3), 168–182. https://doi.org/10.1038/nri.2017.131
Kenter, G. G., et al. (2009). Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. The New England Journal of Medicine, 361(19), 1838–1847. https://doi.org/10.1056/NEJMoa0810097
Krag, D. N., et al. (2020). Genetic biomarkers and their potential role in the surgical management of cancer patients. Surgical Oncology Clinics of North America, 29(1), 123–135. https://doi.org/10.1016/j.soc.2019.08.003
Le, D. T., et al. (2017). Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science, 357(6349), 409–413. https://doi.org/10.1126/science.aan6733
Melief, C. J. M., et al. (2015). Therapeutic Cancer Vaccines. Journal of Clinical Investigation, 125(9), 3401–3412. https://doi.org/10.1172/JCI80009
Mellman, I., et al. (2011). Cancer immunotherapy comes of age. Nature, 480(7378), 480–489. https://doi.org/10.1038/nature10673
Miller, K. D., et al. (2022). Cancer Treatment and Survivorship Statistics, 2022. CA: A Cancer Journal for Clinicians, 72(5), 409–436. https://doi.org/10.3322/caac.21731
Ott, P. A., et al. (2017). Combination Immunotherapy: A Roadmap for Future Development. Nature Reviews Clinical Oncology, 14(5), 273–283. https://doi.org/10.1038/nrclinonc.2016.166
Rech, A. J., et al. (2016). Neoantigen-based vaccines synergize with immune checkpoint blockade to induce tumor regression. Nature Medicine, 22(8), 852–860. https://doi.org/10.1038/nm.4130
Rosenberg, S. A., et al. (2008). Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer, 8(4), 299–308. https://doi.org/10.1038/nrc2355
Sabatini, D. M. (2017). Twenty-five years of mTOR: Uncovering the link from nutrients to cancer. Nature Reviews Cancer, 17(10), 704–712. https://doi.org/10.1038/nrc.2017.77
Sahin, U., et al. (2017). Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 547(7662), 222–226. https://doi.org/10.1038/nature23003
Schumacher, T. N., et al. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69–74. https://doi.org/10.1126/science.aaa4971
Sledge, G. W. Jr., et al. (2020). Precision Oncology and the Role of Biomarkers in Cancer Surgery. Journal of Clinical Oncology, 38(17), 1965–1973. https://doi.org/10.1200/JCO.19.03279
Topalian, S. L., et al. (2012). Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454. https://doi.org/10.1056/NEJMoa1200690
Van Allen, E. M., et al. (2014). Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nature Medicine, 20(6), 682–688. https://doi.org/10.1038/nm.3559
Vogelstein, B., et al. (2013). Cancer Genome Landscapes. Science, 339(6127), 1546–1558. https://doi.org/10.1126/science.1235122
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jorge Angel Velasco Espinal, Andrea Burgos Mondragón, Javier Gerardo Pérez Aparicio, Geamiley Anggeline Atencio Valdez, Perla Rosalba Pineda Arelio, Emmanuel Trujillo Giles, Naomi Aquetzali Domínguez Campos (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los artículos publicados en la revista se distribuyen bajo la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a terceros descargar, copiar, distribuir, adaptar y reutilizar una obra, incluso con fines comerciales, siempre que se otorgue el crédito adecuado al autor original.
