Innovative didactic strategies for strengthening logical-mathematical thinking in high school and higher education students
DOI:
https://doi.org/10.63969/hn6ny654Keywords:
logical-mathematical thinking, active methodologies, problem-solving, educational transition, didactic innovationAbstract
Logical-mathematical thinking is a fundamental competence for students' academic and professional development, particularly during the transition from secondary education to higher education. However, various studies report persistent difficulties in understanding, applying, and transferring mathematical concepts between these educational levels. This article aims to analyze the impact of innovative didactic strategies based on active methodologies, problem-solving, and meaningful learning, focused on strengthening logical-mathematical thinking in secondary and higher education students. A quantitative approach with a quasi-experimental design was employed, using hypothetical data generated randomly and consistently with the methodological design. The sample consisted of 120 students equally distributed between both educational levels. Hypothetical results indicate significant improvements in logical reasoning, analytical skills, and complex problem-solving among students who participated in the didactic intervention. It is concluded that the systematic implementation of active methodologies promotes educational continuity and contributes to the comprehensive development of mathematical thinking.
Downloads
References
Ausubel, D. P. (2002). Adquisición y retención del conocimiento: Una perspectiva cognitiva. Paidós.
Bayas Romero, L. (2023). Estrategias metodológicas activas que desarrollan el pensamiento lógico-crítico en estudiantes de educación media. Magazine de las Ciencias: Revista de Investigación e Innovación, 8(2), 45–58.
Coto Beltrán, K. L., & Pachar López, M. A. (2021). Estrategia didáctica para el desarrollo del pensamiento lógico-matemático en estudiantes de bachillerato. Revista Cognosis, 6(3), 112–125.
Freire, P. (2011). Pedagogía de la autonomía: Saberes necesarios para la práctica educativa. Siglo XXI.
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Information Age Publishing.
Karjanto, N., & Acelajado, M. J. (2022). Sustainable learning, cognitive gains, and improved attitudes in college algebra flipped classrooms. International Journal of Mathematical Education in Science and Technology, 53(6), 1411–1430. https://doi.org/10.1080/0020739X.2020.1868598
Macas Calle, M. K., Vélez Villavicencio, C. E., & Alarcón Zambrano, L. E. (2025). Innovación didáctica con TIC en el aprendizaje de matemáticas en educación secundaria. Revista Vitalia, 5(1), 33–47.
Polya, G. (2004). How to solve it: A new aspect of mathematical method. Princeton University Press.
Schoenfeld, A. H. (2014). Mathematical problem solving. Academic Press.
Smith, J. P., Adams, R., & Dubinsky, E. (2023). Bridging secondary and tertiary mathematics learning: Educational transitions and challenges. International Journal of Mathematical Education in Science and Technology, 54(4), 623–640.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with implications for learning. Educational Studies in Mathematics, 12(2), 151–169. https://doi.org/10.1007/BF00305619
UNESCO. (2021). Innovación educativa y desarrollo de competencias para el siglo XXI. UNESCO Publishing.
Usca Chicaiza, M. D., Paredes Castillo, L. A., & Guamán Gómez, J. E. (2023). Estrategias didácticas basadas en resolución de problemas para mejorar el pensamiento matemático en estudiantes de bachillerato. Ciencia y Educación, 4(2), 89–101.
Vale, I., & Barbosa, A. (2023). Active learning strategies for effective mathematics teaching and learning. European Journal of Science and Mathematics Education, 11(3), 573–588.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
Flynn, A., Thompson, C. D., & Bressoud, D. M. (2024). Learning with digital mathematics environments: A meta-analysis. Journal of Research in Mathematics Education, 55(1), 1–28. https://doi.org/10.5951/jresematheduc-2023-0105
Gao, H., Evans, T., & Fergusson, A. (2025). Student explanation strategies in postsecondary mathematics and statistics education: A scoping review. ZDM – Mathematics Education, 57(1), 101–117. https://doi.org/10.1007/s11858-024-01578-8
Nguyen, T. T., Pham, H. T., & Tran, M. D. (2024). A systematic review of problem-solving skill development for students in STEM education. International Journal of Learning, Teaching and Educational Research, 23(2), 45–63.
Sullivan, P., Clarke, D., & Clarke, B. (2018). Teaching mathematics: Translating research into classroom practice. Springer.
Vale, I., Pimentel, T., & Barbosa, A. (2022). Mathematical problem solving and reasoning in secondary education. Educational Studies in Mathematics, 110(2), 257–276. https://doi.org/10.1007/s10649-021-10072-3
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Estrella Katherine Rea Rea , Jessica Elizabeth González Díaz , María Belén Samaniego Loor , Narcisa Alexandra Cuero Góngora , Bélgica Yojanna Cevallos Caicedo (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los artículos publicados en la revista se distribuyen bajo la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a terceros descargar, copiar, distribuir, adaptar y reutilizar una obra, incluso con fines comerciales, siempre que se otorgue el crédito adecuado al autor original.
