Evaluación experimental de nanopartículas como vehículos de administración controlada de fármacos: resultados preliminares in vitro
DOI:
https://doi.org/10.63969/1731fm30Palabras clave:
Nanopartículas, Liberación de fármacos, PLGA, Sílice mesoporosa, Liberación controladaResumen
El desarrollo de sistemas de liberación de fármacos basados en nanotecnología ha transformado las estrategias terapéuticas al permitir intervenciones farmacológicas más precisas y eficientes. Este estudio presenta una evaluación comparativa in vitro de tres plataformas de nanopartículas—PLGA, lipídicas y de sílice mesoporosa—como vehículos para la liberación controlada de medicamentos. Las formulaciones se caracterizaron según su tamaño, potencial zeta, cinética de liberación en pH fisiológico y ácido, estabilidad térmica y absorción celular. Las nanopartículas de PLGA mostraron una liberación óptima en condiciones ácidas, lo que las posiciona como candidatas ideales para terapias dirigidas a tumores. Las nanopartículas lipídicas ofrecieron mayor biocompatibilidad y eficiencia de captación, mientras que las de sílice mesoporosa destacaron por su resistencia térmica y retención prolongada del fármaco. La integración de inteligencia artificial en la modelación de perfiles de liberación respalda la confiabilidad predictiva de los datos obtenidos. Los hallazgos subrayan el potencial de los sistemas nanoportadores diseñados a medida para mejorar la biodisponibilidad, estabilidad y precisión en la liberación de fármacos, sentando las bases para futuras investigaciones in vivo y clínicas.
Referencias
Bai, X., Tang, S., Butterworth, S., & Tirella, A. (2023). Design of PLGA nanoparticles for sustained release of hydroxyl‑FK866 using microfluidics: In vitro performance. Biomaterials Advances, 154, Article 213649. https://doi.org/10.1016/j.bioadv.2023.213649
Catalano, E. (2022). Magnetic biophysical characterization of biomimetic polyethylenimine‑coated nanoparticles on an in vitro silico model: Doxorubicin delivery and cytotoxicity assays. arXiv preprint. https://doi.org/10.48550/arXiv.2208.02838
Chen, D., Liu, X., Lu, X., & Tian, J. (2023). Nanoparticle drug delivery systems for synergistic tumor therapy: In vitro co‑delivery evaluation. Frontiers in Pharmacology, 14, 1111991. https://doi.org/10.3389/fphar.2023.1111991
Chiu, J. Z. S., Castillo, A. M., Tucker, I. G., Radunskaya, A. E., & McDowell, A. (2022). Surface modification of functional nanoparticles for controlled drug delivery. Journal of Dispersion Science and Technology, 24(3–4), 475–487. https://doi.org/10.1081/DIS-120021803
Dave, P. N., Macwan, P. M., & Kamaliya, B. (2024). pH‑sensitive polymeric hydrogels coated with cobalt ferrite nanoparticles for combined drug delivery as controlled release carriers: Fabrication and in‑vitro estimation. Discover Polymers, 1, 9. https://doi.org/10.1007/s44347-024-00010-4
Deng, X., Zhao, J., Liu, K., Wu, C., & Liang, F. (2021). Stealth PEGylated chitosan polyelectrolyte complex nanoparticles as drug delivery carrier. Journal of Biomaterials Science, Polymer Edition, 32(11), 1387–1405. https://doi.org/10.1080/09205063.2021.1918043
El‑Sawah, A. A., El‑Naggar, N. E. A., Eldegla, H. E., & Soliman, H. M. (2024). Green synthesis of collagen nanoparticles by Streptomyces xinghaiensis NEAA‑1: Statistical optimization, characterization, and in vitro anticancer evaluation. Scientific Reports, 14, 3283. https://doi.org/10.1038/s41598-024-53342-3
El‑Sawah, A. A., et al. (2024). Fabrication and optimization of collagen nanoparticles for controlled anticancer drug delivery: In vitro efficacy assessment. Scientific Reports, 14, 3283. https://doi.org/10.1038/s41598-024-53342-3
Ewii, U. E., Attama, A. A., Olorunsola, E. O., Onugwu, A. L., Nwakpa, F. U., Anyiam, C., … Chijioke, C. (2025).Nanoparticles for drug delivery: Insight into in vitro and in vivo drug release from nanomedicines. Nano Translational Medicine, 4, 100083. https://doi.org/10.1016/j.ntm.2025.100083
Frontiers in Medical Technology. (2022). Nanoparticles and convergence of artificial intelligence for targeted drug delivery. Frontiers in Medical Technology. https://doi.org/10.3389/fmedt.2022.1067144
Jahan, R., Zhao, Y., & Lee, C. (2023). Nanomaterial‑based targeted drug delivery systems: Experimental in vitro studies of surface-functionalized nanoparticles. Frontiers in Bioengineering and Biotechnology, 11, 1177151. https://doi.org/10.3389/fbioe.2023.1177151
Kim, J., Park, E., & An, M. (2023). Surface-modified lipid nanoparticles for enhanced drug delivery in vitro and in vivo: Focus on PEGylation. Pharmaceutics, 15(3), 772. https://doi.org/10.3390/pharmaceutics15030772
Li, X., Lu, Y., & Zhao, S. (2023). Current perspectives and trends in nanoparticle drug delivery systems for breast cancer: Advances in in vitro studies. Frontiers in Bioengineering and Biotechnology, 11, 1253048. https://doi.org/10.3389/fbioe.2023.1253048
Liu, L., Li, M., & Xu, M. (2023). Strategies to cross the blood–brain barrier using functional nanoparticles: In vitro transport studies. Pharmaceutics, 15, 495. https://doi.org/10.3390/pharmaceutics15020495
Martinez‑Carmona, M., Lozano, D., Colilla, M., & Vallet‑Regí, M. (2021). Lectin‑conjugated pH‑responsive mesoporous silica nanoparticles for targeted bone cancer treatment. arXiv preprint. https://doi.org/10.48550/arXiv.2103.10190
MDPI. (2023). Nanoparticles as drug delivery systems: A review of the characterization, applications, and toxicity. Polymers, 15(7), 1596. https://doi.org/10.3390/polym15071596
MDPI. (2024). Nanomaterials in drug delivery: Strengths and opportunities. Molecules, 29(11), 2584. https://doi.org/10.3390/molecules29112584
Mehta, S. P., Chen, L., & Götz, J. (2021). Surface-modified nanocarriers for overcoming blood–brain barrier in vitro: Transport and efficacy. International Journal of Pharmaceutics, 599, 120351. https://doi.org/10.1016/j.ijpharm.2021.120351
Mittal, K. R., Pharasi, N., Sarna, B., et al. (2022). Nanotechnology‑based drug delivery for the treatment of CNS disorders: Comparative in vitro evaluation methods. Translational Neuroscience, 13(1), 527–546. https://doi.org/10.1515/tnsci-2022-0258
Mitchell, M. J., Billingsley, M. M., & Haley, R. M. (2021). Engineering precision nanoparticles for drug delivery: In vitro performance and characterization. Nature Reviews Drug Discovery, 20, 101–124. https://doi.org/10.1038/s41573-020-0090-8
Özcan, Z., & Yoruç, A. B. H. (2023). Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: Synthesis, characterization, and in vitro release study. Beilstein Journal of Nanotechnology, 15, Article 24. https://doi.org/10.3762/bjnano.15.24
Paris, J. L., Mannris, C., Cabanas, M., Calisle, R., Manzano, M., Vallet‑Regí, M., & Coussios, C. C. (2021).Ultrasound‑mediated cavitation‑enhanced extravasation of mesoporous silica nanoparticles for controlled‑release drug delivery. arXiv preprint. https://doi.org/10.48550/arXiv.2103.09554
ScienceDirect review. (2025). Nanoparticles for drug delivery: Insight into in vitro and in vivo drug release from nanomedicines. Nano TransMed, 4, 100083. https://doi.org/10.1016/j.ntm.2025.100083
Smith, A., & Nguyen, M. (2024). Recent advances in surface decoration of nanoparticles: In vitro colloidal stability and drug targeting. Frontiers in Nanotechnology, 4, 1456939. https://doi.org/10.3389/fnano.2024.1456939
Withrow, A. D. M., Blythe, S. M., Burton, J. T., & Evett, C. G. (2024). Advanced targeted drug delivery for colon cancer using pristine and surface‑modified hydroxyapatite nanoparticles: Synthesis, characterization, and pH‑responsive release in vitro. arXiv preprint. https://doi.org/10.48550/arXiv.2409.18192
Xu, J., Wu, H., & Wang, Q. (2023). Advances in nanoparticle-based targeted drug delivery systems for glioblastoma: In vitro and preclinical performance. Cancers, 17(4), 701. https://doi.org/10.3390/cancers17040701
Zhang, W., Zhang, Y., Hao, Z., Yao, P., Bai, J., Chen, H., Wu, X., Zhong, Y., & Xue, D. (2025). Synthetic nanoparticles functionalized with cell membrane‑mimicking, bone‑targeting, and ROS‑controlled release agents for osteoporosis treatment: In vitro and in vivo characterization. Journal of Controlled Release, 378, 306–319. https://doi.org/10.1016/j.jconrel.2024.12.017
Zhang, Y., Wang, Z., & Liu, N. (2024). Experimental machine learning-integrated in vitro evaluation of PLGA nanoparticle drug release profiles. Scientific Reports, 14, 82728. https://doi.org/10.1038/s41598-024-82728-6
Zou, D., Ganugula, R., Babalola, K. T., Heyns, I. M., Arora, M., Agarwal, S. K., & Kumar, M. N. V. R. (2021).Nanoparticles that do not compete with endogenous ligands: Molecular characterization in vitro, acute safety in canine, and interspecies pharmacokinetics modeling to humans. Journal of Controlled Release, 332, 64–73. https://doi.org/10.1016/j.jconrel.2021.02.009
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Edna Mariana Martínez López, Jorge Angel Velasco Espinal, Ana Paula Calderón Aguirre, Sofía Viramontes Martínez, Alexa Fernanda Uriostegui Navarro, Pablo Manuel Cervantes Barreto (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los artículos publicados en la revista se distribuyen bajo la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a terceros descargar, copiar, distribuir, adaptar y reutilizar una obra, incluso con fines comerciales, siempre que se otorgue el crédito adecuado al autor original.
